Abstract
Using UV-Vis, FT-IR, fluorescence spectroscopy and protein-ligand docking, the interactions between the zinc complexes with drug analogues and bovine serum albumin were investigated. In addition, considering the ubiquitous presence of zinc ions in the human system, we studied the interactions between this ion with hymecromone, dihydropyridine analogue, and acetamide, as well as the pH influence on these systems. The complexes were synthesized by interaction between the ligands and the Zn (II) ion in a 2:1M ratio. Elemental analysis, FT-IR, and UV-Vis spectroscopy studies investigated the structure of the synthesized complexes. Fluorescence spectroscopy, UV-Vis, molecular docking and molecular dynamics were used to study the interactions of the Zn complexes with the BSA. The drug-Zn (II) system's pH effect was investigated using UV-Vis spectroscopy. After the complexation with the zinc, the drug molecules exhibited higher apparent binding affinity to BSA. BSA's fluorescence efficiency by the drug analogues was enhanced. In addition, molecular modelling was used to classify the residue of amino acids in the BSA playing key roles in this binding interaction. An increase in pH appears to contribute to alkaline hydrolysis of the Zn (II) molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.