Abstract
We have explored the optical properties of bilayers of Mercury telluride (HgTe) nanocrystals (NCs) embedded in polymer which were prepared from a colloidal solution. These NCs show strong luminescence in the near infrared at room temperature, which makes them an interesting material for the telecommunication area. The emission wavelength can efficiently be tuned by controlling the size of the NCs. We report spectroscopic ellipsometry measurements, which clearly show an energy shift of the critical points (CPs) in the dielectric function to higher energies compared to the HgTe bulk properties. This is caused by quantum confinement in the crystals. The exact peak energies of the transitions are fitted with line-shape models for CPs. Surprisingly, concepts coming from semiconductor bulk optics, as CPs, can be applied to NCs with a diameter of less than 5 unit cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.