Abstract

Abstract The temperature dependence of the optical constants of materials (refractive index, absorption and extinction coefficients, and dielectric function) can be determined with spectroscopic ellipsometry over a broad range of temperatures and photon energies or wavelengths. Such results have practical value, for example for applications of optical materials at cryogenic or elevated temperatures. The temperature dependence of optical gaps and their broadenings also provides insight into the scattering of electrons and holes with other quasiparticles, such as phonons or magnons. This review presents a detailed discussion of the experimental considerations for temperature-dependent ellipsometry and selected results for insulators, semiconductors, and metals in the infrared to ultraviolet spectral regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call