Abstract

Conversion of N=N=CHSiMe3 to O=C=CHSiMe3 by the radical complexes .Cr(CO)3C5R5 (R = H, CH3) derived from dissociation of [Cr(CO)3(C5R5)]2 have been investigated under CO, Ar, and N2 atmospheres. Under an Ar or N2 atmosphere the reaction is stoichiometric and produces the Cr[triple bond]Cr triply bonded complex [Cr(CO)2(C5R5)]2. Under a CO atmosphere regeneration of [Cr(CO)3(C5R5)]2 (R = H, CH3) occurs competitively and conversion of diazo to ketene occurs catalytically as well as stoichiometrically. Two key intermediates in the reaction, .Cr(CO)2(ketene)(C5R5) and Cr2(CO)5(C5R5)2 have been detected spectroscopically. The complex .Cr(13CO)2(O=13C=CHSiMe3)(C5Me5) has been studied by electron spin resonance spectroscopy in toluene solution: g(iso) = 2.007; A(53Cr) = 125 MHz; A(13CO) = 22.5 MHz; A(O=13C=CHSiMe3) = 12.0 MHz. The complex Cr2(CO)5(C5H5)2, generated in situ, does not show a signal in its 1H NMR and reacts relatively slowly with CO. It is proposed to be a ground-state triplet in keeping with predictions based on high level density functional theory (DFT) studies. Computed vibrational frequencies are also in good agreement with experimental data. The rates of CO loss from 3Cr2(CO)5(C5H5)2 producing 1[Cr(CO)2(C5H5)]2 and CO addition to 3Cr2(CO)5(C5H5)2 producing 1[Cr(CO)3(C5H5)]2 have been measured by kinetics and show DeltaH approximately equal 23 kcal mol(-1) for both processes. Enthalpies of reduction by Na/Hg under CO atmosphere of [Cr(CO)n(C5H5)]2 (n = 2,3) have been measured by solution calorimetry and provide data for estimation of the Cr[triple bond]Cr bond strength in [Cr(CO)2(C5H5)]2 as 72 kcal mol(-1). The complex [Cr(CO)2(C5H5)]2 does not readily undergo 13CO exchange at room temperature or 50 degrees C implying that 3Cr2(CO)5(C5H5)2 is not readily accessed from the thermodynamically stable complex [Cr(CO)2(C5H5)]2. A detailed mechanism for metalloradical based conversion of diazo and CO to ketene and N2 is proposed on the basis of a combination of experimental and theoretical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.