Abstract
Rhea is the second largest icy satellites of Saturn and it is mainly composed of water ice. Its surface is characterized by a leading hemisphere slightly brighter than the trailing side. The main goal of this work is to identify homogeneous compositional units on Rhea by applying the Spectral Angle Mapper (SAM) classification technique to Rhea’s hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini Orbiter in the infrared range (0.88–5.12μm). The first step of the classification is dedicated to the identification of Rhea’s spectral endmembers by applying the k-means unsupervised clustering technique to four hyperspectral images representative of a limited portion of the surface, imaged at relatively high spatial resolution. We then identified eight spectral endmembers, corresponding to as many terrain units, which mostly distinguish for water ice abundance and ice grain size. In the second step, endmembers are used as reference spectra in SAM classification method to achieve a comprehensive classification of the entire surface. From our analysis of the infrared spectra returned by VIMS, it clearly emerges that Rhea’ surface units shows differences in terms of water ice bands depths, average ice grain size, and concentration of contaminants, particularly CO2 and hydrocarbons. The spectral units that classify optically dark terrains are those showing suppressed water ice bands, a finer ice grain size and a higher concentration of carbon dioxide. Conversely, spectral units labeling brighter regions have deeper water ice absorption bands, higher albedo and a smaller concentration of contaminants. All these variations reflect surface’s morphological and geological structures. Finally, we performed a comparison between Rhea and Dione, to highlight different magnitudes of space weathering effects in the icy satellites as a function of the distance from Saturn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.