Abstract

Near-pure samples of (E)-phenylvinylacetylene ((E)-PVA) and (Z)-phenylvinylacetylene ((Z)-PVA) were synthesized, and their ultraviolet spectroscopy was studied under jet-cooled conditions. The fluorescence excitation and UV-UV holeburning (UVHB) spectra of both isomers were recorded. The S0-S1 origin of (E)-PVA occurs at 33,578 cm(-1), whereas that for (Z)-PVA occurs at 33,838 cm(-1), 260 cm(-1) above that for (E)-PVA. The present study focuses primary attention on the vibronic spectroscopy of (E)-PVA. Single vibronic level fluorescence spectra of many prominent bands in the first 1200 cm(-1) of the S0-S1 excitation spectrum of (E)-PVA were recorded, including several hot bands involving low-frequency out-of-plane vibrations. Much of the ground-state vibronic structure observed in these spectra was assigned by comparison with styrene and trans-beta-methylstyrene, assisted by calculations at the DFT B3LYP/6-311++G(d,p) level of theory. Both S0 and S1 states of (E)-PVA are shown to be planar, with intensity appearing only in even overtones of out-of-plane vibrations. Due to its longer conjugated side chain compared with that of its parent styrene, (E)-PVA supports extensive Duschinsky mixing among the four lowest-frequency out-of-plane modes (nu45-nu48), increasing the complexity of this mixing relative to that of styrene. Identification of the v'' = 0-3 levels of nu48, the lowest frequency torsion, provided a means of determining the 1D torsional potential for hindered rotation about the C(ph)-C(vinyl) bond. Vibronic transitions due to (Z)-PVA were first identified as small vibronic bands that did not appear in the UVHB spectrum recorded with the hole-burn laser fixed on the S0-S1 origin of (E)-PVA. The LIF and UVHB spectra of a synthesized sample of (Z)-PVA confirmed this assignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.