Abstract

A noninvasive method for characterizing Si/Mo thin-film stack thickness and its complex transfer function using common-path optical coherence tomography is proposed, analyzed, and experimentally demonstrated. A laser-produced plasma (LPP)-based extreme ultraviolet (EUV) source was excited by a four-stage nanosecond Yb:fiber laser amplifier with a pulse energy of 1.01mJ. The tabletop LPP EUV source was compact and stable for generating the EUV interference fringes. The measured complex transfer function of the Si/Mo stack was verified near the pristine 13.5-nm wavelength range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.