Abstract

Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO(2) production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2h, 1d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a "soil effect" which increased organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mgkg(-1) of C remained after aerobic incubation, as compared to 4000 mgkg(-1) at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2h and 1d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions (nu(C-O)) disappeared at 1000 and 1200 cm(-1), as also confirmed by the (13)C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.