Abstract
AbstractMicroporous materials containing hydrated silanol groups Si–OH as well as hydrated proton complexes, H2n+1On+, including hydronium (n = 1), Zundel (n = 2), and Eigen (n = 4) cations, are of practical importance as potential ion exchangers and ion conductors. In this paper, we provide data on crystal‐chemical features, hydrogen bonding and Raman spectra of alkaline microporous titano‐, niobo‐, zircono‐, and aluminosilicate minerals belonging to the labuntsovite, lovozerite, eudialyte, and sodalite groups in which a part of sodium was substituted by hydrated proton complexes under low‐temperature hydrothermal or supergene conditions. Most minerals studied in this work do not have synthetic analogues and are considered as possible natural prototypes of microporous materials with technologically important properties. The obtained experimental data and their comparison with the results of ab initio theoretical calculations published elsewhere show that Raman spectroscopy is an effective tool for the precise identification of hydrated proton complexes with extremely strong hydrogen bonds and estimation of corresponding O···O distances in the range of 2.37–2.68 Å. The presence of hydrated proton complexes in microporous silicates is a clear and sensitive geological indicator showing that a rock underwent the low‐temperature alteration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.