Abstract

Detailed spectroscopic characterization of Cr:ZnSe (Cr:ZnS) crystals under visible excitation into the charge transfer bands of Cr2+ impurities was performed. Middle infrared photoluminescence of Cr:ZnS under this excitation exhibits shorter rise time (~150ns) than that previously observed in Cr:ZnSe (~4-10 μs). As a result the quantum yield of Cr:ZnS mid-IR photoluminescence under 10ns pulsed 416nm excitation into the charge transfer band was estimated at close to 100%, which contrasts with low (~14%) quantum yield measured in Cr:ZnSe under 532nm pulsed excitation, indicating the possibility of efficient excitation of the upper laser level of Cr:ZnS using this mechanism. The rise time can be caused by cascade relaxation from higher lying levels through the 3T1 metastable level, producing luminescence in the near-IR. Measurements of the temperature dependence of the middle- and near infrared photoluminescence signals are reported. These values indicated that more efficient pumping of Cr:ZnSe under 532nm excitation can be achieved at temperatures greater than 300 K. Results of high temperature laser experiments supporting this idea are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.