Abstract

Radical cations of various 3-methylalkanes (C 6-C 14) have been produced and stabilized by γ-irradiation of the corresponding neutral compounds in saturated chloroflourocarbon (1,1-diflourotetra-chloroethane and 1,1,2-trichlorotriflouroethane) and perflourocarbon (perflourohexane and perfluoro-methylcyclohexane) matrices at 77 K. The perfluorocarbon matrices appeared more suitable for studies of the lighter radical cations, whereas the chlorofluorocarbon matrices were more suited for studies of the heavier radical cations; intermediary cations could be studied in both types of matrices. After irradiation, electronic absorptions associated with both the matrix and the alkane additive were observed. Pure spectra of the 3-methylalkane radical cations were obtained by difference spectrometry, after selective elimination of these cations by illumination. The electronic absorption spectra of the 3-methylalkane radical cations consist in all cases of a single broad absorption band. The spectral position of this band shifts to longer wavelengths with increasing chain length; the maximum of the absorption band was found to be situated at 490 nm for 3-methylpentane radical cations and at 940 nm for 3-methyltridecane radical cations. The results are most interesting because they give direct information on the electronic absorption of 3-methylpentane radical cations. It was found that the molar extinction coefficients of these cations are not very much smaller than those of other 3-methylalkane radical cations and thus must be of the order of 10 3dm 3·mol -1·cm -1. From this it is deduced that the majority of positive ions trapped in irradiated pure 3-methylpentane glasses at 77 K are not parent cations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call