Abstract

The advantages of pulsed low-current high-voltage discharges operated at atmospheric pressure and the ease with which such discharges can be implemented industrially contributed to their popularity. However, the high reactivity of a pulsed plasma implies that thorough diagnostics are needed to fully understand the interactions inside these plasmas. Some of the key parameters determining plasma properties of low-current discharges are the electron number density and the temperature of heavy particles. Both parameters can be determined experimentally with spectroscopic techniques, for example by investigating the broadening of spectral lines due to the Stark effect and by fitting synthetic spectra to molecular transitions. To the authors’ knowledge, experimentally determined electron densities for pulsed low-current discharges operated in a power range between 300 W and 1000 W have not been performed in previous works. Thus, in this work, the electron number density and temperature of heavy particles of one of several commercially available plasma systems are determined by means of emission spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call