Abstract

Four palladium (II) and platinum(II) complexes with the formula [MCl2(HPhqS)2] and [M(PhqS)2] (MII = Pd and Pt), were synthesized by treating Na2PdCl4 or K2PtCl4 with 2 mol of 4-Methylene-3-phenyl-3,4-dihydroquinazoline-2(1H)-thione (HPhqS) with or without the present base. The geometry around the Pd(II) and Pt(II) ions was a square planner and the HPhqS ligand was bonded as monodentate through the sulfur atom in complexes (1) and (2), while as bidentate chelating ligand through the nitrogen and sulfur atoms in complexes (3) and (4) as revealed by the data collection from spectroscopic studies. The prepared compounds were fully characterized by different physicochemical and spectroscopic methods. Furthermore, the free HPhqS ligand and its complexes were evaluated in vitro in regard to their antimicrobial activity against five bacteria species (Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, staphylococcus epidermidis and staphylococcus aureus). Moreover, the cytotoxic activity of the compounds was examined against breast (MCF-7) and lung (A549) cancer cell lines, and the [PdCl2(LH)2] (1) and [PtCl2(LH)2] (2) appeared a highest inhibitory effect against MCF-7 cell lines with IC50 = 4.291 ± 0.181 μM and 3.479 ± 0.162 μM, respectively, in comparison to the standard control and other complexes. The prepared ligand accompanied by the synthesized complexes were optimized using B3LYP method and 6–311++G(d,p) biases sets for the ligand and SDD basis set for the central metal. Different quantum parameters including electron affinity, ionization energy, dipole moment, hardness and vibrational frequencies were calculated for the ligand and its complexes. The total energy calculated for the two tautomeric structures of the ligand HPhqS showed a slightly higher value of the thione form over the thiol form. In addition, the trans-[PdCl2(HPhqS)2] complex possessed the highest dipole moment values while the cis-[PtCl2(HPhqS)2] showed non. In general, the obtained theoretical results showed a good match to the experimental findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call