Abstract

The electronic structures and spectroscopic behavior of three high-spin FeII complexes of fluorinated alkoxides were studied: square-planar {K(DME)2}2[Fe(pinF)2] (S) and quasi square-planar {K(C222)}2[Fe(pinF)2] (S') and trigonal-planar {K(18C6)}[Fe(OC4F9)3] (T) where pinF = perfluoropinacolate and OC4F9 = tris-perfluoro-t-butoxide. The zero-field splitting (ZFS) and hyperfine structure parameters of the S = 2 ground states were determined using field-dependent 57Fe Mössbauer and high-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopies. The spin Hamiltonian parameters were analyzed with crystal field theory and corroborated by density functional theory (DFT) and ab initio complete active space self-consistent field (CASSCF) calculations. Whereas the ZFS tensor of S has a small rhombicity, E/D = 0.082, and a positive D = 15.17 cm-1, T exhibits a negative D = -9.16 cm-1 and a large rhombicity, E/D = 0.246. Computational investigation of the structural factors suggests that the ground-state electronic configuration and geometry of T's Fe site are determined by the interaction of [Fe(OC4F9)3]- with {K(18C6)}+. In contrast, two distinct countercations of S/S' have a negligible influence on their [Fe(pinF)2]2- moieties. Instead, the distortions in S' are likely induced by the chelate ring conformation change from δλ, observed for S, to the δδ conformation, determined for S'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call