Abstract

In this research work, we have characterized and simulated a well-known hole transport material (HTM) for perovskite solar cell (PSC) and conductive polymer poly (3, 4- ethylenedioxy-thiophene) - poly (styrene sulfonate) (PEDOT: PSS). The PEDOT:PSS is a better contender in the field of photovoltaic with its excellent combination of characteristics like high hole conductivity, stability and transparency. The nanocomposite PEDOT:PSS is deposited on the silicon wafer which is N-type doped for the testing the structure characteristic variations. The thin film of PEDOT:PSS over Silicon wafer is prepared with the conventional coating technique and characterized with spectroscopic techniques. The structural behavior has been disclosed under the comprehensive study of Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), and X-Ray Diffractometer (XRD) mapping. On the other hand, the important optical properties were revealed by detailed analysis by spectroscopy characterization (FTIR, UV-vis, Raman spectra) covering the range of 200–2500 nm. The maximum absorbance range of PEDOT:PSS is 270–320 nm with maximum absorption at 280.5 nm. The photovoltaic cell is simulated by using Spiro-OMeTAD and PEDOT:PSS as Hole Transport Layer (HTL) for a better comparison in terms of power efficiency, quantum efficiency and fill factor. The PSC device shows exemplary power efficiency of 11.89% and 12.13% for PEDOT:PSS & Spiro-OMeTAD as HTL respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.