Abstract

We report a combination of quantum mechanical calculations and a range of spectroscopic measurements in the gas phase of N,N-diethylhydroxylamine, an important scavenger compound. Three conformers were observed by pulsed jet Fourier transform microwave spectroscopy in the 6.5–18.5 GHz frequency range. They are characterized by the hydroxyl hydrogen atom being in trans orientation with respect to the bisector of the CNC angle while the side alkyl chains can be both trans (global minimum, Cs symmetry, A = 7608.1078(4), B = 2020.2988(2) and C = 1760.5423(2) MHz) or one trans and the other gauche (second energy minimum, A = 5302.896(1), B = 2395.9822(4) and C = 1804.8567(3) MHz) or gauche’ (third energy minimum, A = 5960.8025(6), B = 2273.6627(4) and C = 1975.8074(4) MHz). For the global minimum, the 13Cα,13Cβ and 15N isotopologues were observed in natural abundance, allowing for an accurate partial structure determination. Moreover, several lines were detected by free jet absorption millimeter wave spectroscopy in the 59.6–74.4 GHz spectral range. The electron binding energies of the highest occupied molecular orbital and the next-to-highest occupied molecular orbital, determined by photoelectron spectroscopy, are 8.95 and 10.76 eV, respectively. Supporting calculations evidence that, (i) upon ionization of the HOMO, the molecular structure changes from an amine to an N-oxoammonium arrangement and (ii) the 0–0 of the HOMO-1 photoionization is 10.46 eV. The K-shell binding energies, determined by X-ray photoelectron spectroscopy, are 290.42 eV (Cβ), 291.45 eV (Cα), 405.98 eV (N) and 538.75 eV (O). The Fourier transform near infrared spectrum is reported and a tentative assignment is proposed. The equilibrium wavenumber (ω̃ = 3811 cm−1) and the anharmonicity constant (ω̃χ = −87.5 cm−1) of the hydroxyl stretching mode were estimated using a quadratic model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call