Abstract

Photophysical and spectroscopic properties of a fluorescent analogue, 2-(5-selenocyanato-pentyl)-6-chlorobenzo- [de]isoquinoline-1,3-dione (NP) in different solvents has been described in this paper using steady-state, time resolved spectroscopy and density functional theory (DFT) calculation. Stoke's shifted emission band in different solvents clearly demonstrate the highly polar character of the excited state, which is also supported by the enhancement of dipole moment of the molecule upon photoexcitation. Spectroscopic studies and multiple linear regression analysis method reveal that the solvatochromic behavior of the probe depends not only on the polarity of the medium but also on the hydrogen bonding interaction with the solvents. When the solvent effect was taken into account, the computed results show encouraging agreement with known experimental data. This article reveals the excellent correlation between the predicted and experimental spectral data of 1,8-naphthalimide derivative, providing a useful tool in the design of new fluorogenic probes having potential therapeutic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call