Abstract

The spectroscopic (FT-IR, FT-Raman, NMR), electronic (UV--Vis.), structural and thermodynamical properties of an anti-inflammatory analgesic called Naproxen Sodium, (s)-6-methoxy-α-methyl-2-naphthaleneacetic acid sodium salt are submitted by using both experimental techniques and theoretical methods as quantum chemical calculations in this work. The equilibrium geometry and vibrational spectra are calculated by using DFT (B3LYP) with 6-311++G (d,p) basis set using GAUSSIAN 09. The vibrational wavenumbers are also corrected with scale factor to take better results for the calculated data. The HOMO-LUMO calculations are carried out on the title compound. The theoretical and experimental NMR peaks were found to be in good agreement. In addition, the detailed study on the Non-Bonding Orbitals, the excitation energies, AIM charges, condensed fukui calculations, thermodynamical properties, Localized Orbital Locator (LOL) and Electron Localization Function (ELF) are also performed. Furthermore, the study is extended to calculate the first order hyperpolarizability and to predict its NLO properties. The docking studies details helped on predicting the binding with different proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call