Abstract

Nd3+ doped fluorine containing zinc-aluminophosphate glasses have been prepared with alkali and alkaline earth content to understand the effect of network modifiers on radiative process. The physical and optical properties of these glasses have been evaluated. The Judd–Ofelt model for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters Ω2, Ω4 and Ω6 for each glass. Using these parameters, transition probability (A), total transition probability (AT), branching ratios (βR) radiative life times (τR) and integrated cross-section (σa) for the stimulated emission have been theoretically calculated for certain excited Nd3+ fluorescent levels. From the obtained results the conclusion is made about the possibility of using these glasses as laser material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.