Abstract

Febuxostat (FXT) is a urate-lowering drug and xanthine oxidase inhibitor which is used for the treatment of hyperuricemia and gout caused by increased levels of uric acid in the blood (hyperuricemia). The present study aims to provide deeper knowledge of the structural, vibrational spectroscopic and physiochemical properties of FXT based on monomeric and dimeric model with the aid of combination of experimental and computational methods. The conformational analysis of form Q has been done to predict the possible structure of unknown form A. Vibrational spectra of form A and Q has been compared to get an idea of hydrogen bonding interactions of form A. A computational study of FXT has been executed at different level (B3LYP, M06-2X, WB97XD) of theory and 6–31 G (d, p) basis set for dimeric model to elucidate the nature of intermolecular hydrogen bond. The red shift observed in the stretching modes of OH, CO groups and blue shift in stretching mode of CN group in experimental as well as in theoretical spectra explains the involvement of these groups in intermolecular hydrogen bonding. NBO analysis shows that change in electron density (ED) in the lone pair orbital to σ* antibonding orbital (LP1 (N39) → σ* (O3-H38)) with maximum value of E(2) energy confirms the presence of hydrogen bond (N39⋯H38-O3) leading to dimer formation. Study of topological parameters was executed for dimer using Bader's atoms in molecules (AIM) theory predicting the partially covalent nature of hydrogen bonds present in the molecule. The study of molecular electrostatic potential surface (MEPS) map ascertains that the CO, CN group are prone to electrophilic attack and OH group is active towards nucleophilic attack. The lower energy band gap and higher value of softness of dimeric model of FXT indicates its more reactivity, polarisability than monomeric model. The local reactivity descriptors predict the order of reactive sites towards electrophilic, nucleophilic and radical attack. An investigation made to determine the ligand protein interaction of FXT through docking with different molecular targets reveals the inhibitive as well as antibacterial nature of FXT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call