Abstract

In this era of science, cancer is a black dot on the face of humankind. Consequently, the search of promising anticancer agents continues. Here we designed and synthesized new N-substituted rhodanines (RD1-7), evaluated their multispectroscopic interaction with calf thymus DNA, in silico and anticancer studies against MDA-MB-231cancer cell line. By MTT assay rhodanine RD1 was found to be the most potent with IC50 value of 72.61 μM. In addition, DNA binding studies (UV-vis and fluorescence) revealed strong binding affinity of RD1-7 with DNA (Kb in the range of 1.5-7.4 × 105 M-1). Moreover, molecular docking study, experimental DNA binding and anticancer studies are all well agreed to each other. It was observed that H-bonding and hydrophobic attractions were responsible for stability of DNAcompound adducts. Besides, the reported rhodanines (RD1-7) were found as minor groove binders of DNA. Concisely, RD1-7 indicated promising pharmacological properties and hence, shows auspicious future for the development of novel anticancer agents. The reported rhodanines showed excellent anticancer properties. Therefore, the described rhodanines may be used as potential anticancer agents in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call