Abstract

Electroabsorption and electrofluorescence spectroscopies were conducted for tri-9-anthrylborane (TAB) doped in poly(methyl methacrylate) films (1.0 mol %) to reveal the spectroscopic and excited-state properties of the compound. TAB showed three distinct absorption bands: bands I [(19 - 25) x 10(3) cm(-1)], II [(25-31) x 10(3) cm(-1)], and III (>31 x 10(3) cm(-1)). The electroabsorption spectrum demonstrated that the electronic transitions in bands I and III accompanied electric dipole moment changes (Deltamu), while the change in the molecular polarizability contributed mainly to electroabsorption band II. Because of the similarities of the electroabsorption spectrum of band II with that of anthracene itself, band II was assigned to the electronic transition to the locally excited (LE) state of the anthryl group. On the other hand, bands I and III were best described by the electronic transitions to the excited charge-transfer (CT) states. The study demonstrated furthermore that the Deltamu value of TAB accompanied by the lowest-energy electronic transition was as large as 7.8 D, which agreed very well with that determined by the solvent dependences of the absorption and fluorescence maximum energies of TAB (approximately 8.0 D, ref 1): Deltamu = 7.8-8.0 D. The results proved explicitly that the excited state of TAB was localized primarily on the p orbital of the boron atom. Despite the dipole moment change (Deltamu = 7.8-8.0 D) for the lowest-energy electronic transition (band I), the electrofluorescence of TAB accompanied the change in the molecular polarizability. The spectroscopic and excited-state properties of TAB including the curious behavior of the electrofluorescence spectrum as mentioned above were discussed on the basis of theoretical considerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call