Abstract
Spectroscopic methods combined with density functional calculations are used to develop a detailed bonding description of the mu(4)-sulfide bridged tetranuclear Cu(Z) cluster in N(2)O reductase. The ground state of Cu(Z) has the 1Cu(II)/3Cu(I) configuration. The single electron hole dominantly resides on one Cu atom (Cu(I)) and partially delocalizes onto a second Cu atom (Cu(II)) via a Cu(I)-S-Cu(II) sigma/sigma superexchange pathway which is manifested by a Cu(II) --> Cu(I) intervalence transfer transition in absorption. The observed excited-state spectral features of Cu(Z) are dominated by the S --> Cu(I) charge-transfer transitions and Cu(I) based d-d transitions. The intensity pattern of individual S --> Cu(I) charge-transfer transitions reflects different bonding interactions of the sulfur valence orbitals with the four Cu's in the Cu(Z) cluster, which are consistent with the individual Cu-S force constants obtained from a normal coordinate analysis of the Cu(Z) resonance Raman frequencies and profiles. The Cu(I) d orbital splitting pattern correlates with its distorted T-shaped ligand field geometry and accounts for the observed low g( parallel ) value of Cu(Z) in EPR. The dominantly localized electronic structure description of the Cu(Z) site results from interactions of Cu(II) with the two additional Cu's of the cluster (Cu(III)/Cu(IV)), where the Cu-Cu electrostatic interactions lead to hole localization with no metal-metal bonding. The substrate binding edge of Cu(Z) has a dominantly oxidized Cu(I) and a dominantly reduced Cu(IV). The electronic structure description of Cu(Z) provides a strategy to overcome the reaction barrier of N(2)O reduction at this Cu(I)/Cu(IV) edge by simultaneous two-electron transfer to N(2)O in a bridged binding mode. One electron can be donated directly from Cu(IV) and the other from Cu(II) through the Cu(II)-S-Cu(I) sigma/sigma superexchange pathway. A frontier orbital scheme provides molecular insight into the catalytic mechanism of N(2)O reduction by the Cu(Z) cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.