Abstract

The interactions of (-)-epigallocatechin-3-Gallate (EGCG) and anthracycline drugs (doxorubicin, DOX and epirubicin, EPI) alone or in combination with human serum albumin (HSA) under physiological condition were studied by fluorescence spectroscopy, UV-vis absorption spectroscopy, circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). The cytotoxic activity of the single drug, combined drugs, and their complexes with HSA against human cervical cancer HeLa cell line was determined by MTT assay. Fluorescence quenching result and difference spectra of UV absorption revealed the formation of static complex between EGCG, DOX, or EPI and HSA. The binding of EGCG with HSA was driven by both enthalpy and entropy while the binding of DOX or EPI was mainly entropy driven. The nature of binding was expounded based on the effect of sodium chloride, tetrabutylammonium bromide, and sucrose which interfere in electrostatic, hydrophobic, and hydrogen bonding interactions, respectively. Site marker competitive experiments combined with synchronous fluorescence spectra showed that these three ligands mainly bound to subdomain IIA of HSA and were closer to tryptophan residues. In EGCG + DOX/EPI + HSA ternary system, the effect of one drug on the binding ability of another drug was discussed. The influences of the individual and combined binding of EGCG and DOX/EPI on the secondary structure and particle size of HSA were investigated by CD spectroscopy and DLS, respectively. Moreover, the synergistic cytotoxicity of EGCG and DOX/EPI as well as their complexes with HSA were discussed. Obtained results would provide beneficial information on the combination of EGCG and anthracyclines in clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call