Abstract
A lignite humic acid (HA) was fractionated by preparative high performance size-exclusion chromatography (HPSEC) in seven different size-fractions. The size-fractions were characterized by cross polarization (CP) magic angle spinning (MAS) 13C NMR spectroscopy and a further analytical HPSEC elution under UV and fluorescence detection. The alkyl hydrophobic components mainly distributed in the largest molecular-size-fraction, whereas the amount of oxidized carbons increased with decreasing size of fractions. Cross polarization time ( T CH) and proton spin-lattice relaxation time in the rotating frame ( T 1 ρ (H)) were measured from variable contact time (VCT) experiments. The bulk HA was characterized by the shortest T CH values and the longest T 1 ρ (H) values which suggested, respectively, one. an aggregation of components in a large conformation that favored a fast H–C cross polarization, and, two. consequent steric hindrances that prevented fast local molecular motions and decreased proton relaxation rates. Conversely, the separated size-fractions showed longer T CH values and shorter T 1 ρ (H) values than the bulk HA, thereby indicating that they were constituted by a larger number of mobile molecular conformations. The UV and fluorescence absorptions were both low in the large size-fractions that mainly contained alkyl carbons, whereas they increased in the olephinic- and aromatic-rich fractions with intermediate molecular-size, and decreased again in the smaller fractions which were predominantly composed by oxidized carbons. These results support the supramolecular structure of humic substances and indicate that the observed variation in conformational distribution in humic association may be used to explain environmental processes with additional precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.