Abstract

Gallic acid (GA) is a natural ingredient in functional foods, which has various health-promoting and antitumour effects. Peptidyl-prolyl cis/trans isomerase Pin1 plays an important role in preventing the development of some malignant tumours. However, whether there was an interaction between Pin1 and GA remains unknown. In this work, the binding information of GA and Pin1 was investigated systematically using multiple spectral and computational methods. GA bound to Pin1 directly with moderate binding affinity in the order of 104 mol/L, therefore decreasing the activity of Pin1. Also, the binding process of GA to Pin1 was driven through weak van der Waals forces, hydrogen bonds, and electrostatic forces. In addition, the important residues Lys63, Arg68, and Arg69 played a significant role in maintaining the binding stability between Pin1 and GA. Interestingly, GA reduced the activity of Pin1 by affecting its conformational characteristics. Our present work showed that GA binds to Pin1 and inhibits its activity, affecting its structural and functional properties, which may contribute to the therapy of Pin1-related diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.