Abstract

Synchrotron infrared (IR) and micro-Raman spectra of natrolites containing alkaline-earth ions (Ca2+, Sr2+, and Ba2+) and heavy metals (Cd2+, Pb2+, and Ag+) as extra-framework cations (EFCs) were measured under ambient conditions. Complementing our previous spectroscopic investigations of natrolites with monovalent alkali metal (Li+, Na+, K+, Rb+, and Cs+) EFCs, we establish a correlation between the redshifts of the frequencies of the 4-ring and helical 8-ring units and the size of the EFCs in natrolite. Through ab initio calculations we have derived structural models of Ca2+- and Ag+-exchanged natrolites with hydrogen atoms, and found that the frequency shifts in the HOH bending mode and the differences in the OH stretching vibration modes can be correlated with the orientations of the water molecules along the natrolite channel. Assuming that the members of a solid solution series behave as an ideal mixture, we will be able to use spectroscopy to probe compositions. Deviation from ideal behavior might indicate the occurrence of phase separation on various length scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.