Abstract

The formation of coordination complexes between the nitrogen lone pair on poly(4-vinylpyridine) and the metal center in dichlorotricarbonylruthenium(II) is described in this research contribution. {RuCl 2(CO) 3} 2 was chosen because octahedral d 6 heavy-metal centers with π-acid carbonyl ligands exhibit very large ligand field stabilization energies which enhance the glass transition temperatures of polymeric coordination complexes. Relative to undiluted poly(4-vinylpyridine), which exhibits a glass transition at 145°C, T g increases by 27°C at 3 mol% Ru 2+. When the concentration of Ru 2+ is greater than 5 mol%, detection of a diffuse T g above 200°C is difficult via calorimetry because the discontinuity in specific heat decreases considerably. Ambient-temperature infrared spectroscopic data for the pyridine sidegroup in the polymer suggest that the pyridine nitrogen coordinates to ruthenium. Symmetry considerations and high-temperature infrared data for the carbonyl stretching vibrations are consistent with structural models which contain two CO ligands and two pyridine sidegroups or three CO ligands and 1 pyridine sidegroup in the coordination sphere of ruthenium. Hence, it is possible that the transition-metal salt bridges two different chains via the pyridine nitrogen lone pair, forming coordination crosslinks. Hindered mobility of this nature provides a reasonable explanation for the enhancement in T g by 9°C/mol% Ru 2+, up to 3 mol% Ru 2+. Ambient temperature infrared signals in the carbonyl region suggest that as many as five different ligand arrangements of the following pseudo-octahedral complex, RuCl 2(CO) 2(Py) 2, exist simultaneously at low Ru 2+ concentrations and could be responsible for coordination crosslinks. Upon heating, the highly symmetric isomers with trans-CO ligands transform irreversibly to pseudo-octahedral structures with lower symmetry (i.e., cis-CO ligands). Octahedral ruthenium d 6 salts are attractive physical property modifiers when polymeric ligands coordinate to the metal center.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call