Abstract
Foraminifera are unicellular, marine organisms that occur worldwide. A very common species in the German Wadden Sea is Elphidium williamsoni. Some foraminifera (such as elphidia) are able to use kleptoplastidy, which allows them to incorporate chloroplasts from their algal food source into their own cell body. The experiments reported here are based on the fact that chlorophyll (a and c) can be detected in the intact cells with spectroscopic methods in the visible spectral range, which allows an indirect investigation of the presence of sequestered chloroplasts. Starving experiments of E. williamsoni in the light (24h continuous) showed that the greatest decrease in chlorophyll content was recorded within the first 20-30days. From day 60 on, chlorophyll was hardly detectable. Through subsequent feeding on a renewed algal food source a significant increase in the chlorophyll content in foraminifera was noticed. The degradation of chlorophyll in the dark (24h continuous darkness) during the starving period was much more complex. Chlorophyll was still detected in the cells after 113days of starving time. Therefore, we hypotheses that the effect of photoinhibition applies to chloroplasts in foraminifera under continuous illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of photochemistry and photobiology. B, Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.