Abstract
The response of GafchromicTM EBT-XD films to proton irradiation using a Mevion S250TM proton therapy system is studied in this work. Film samples from different batches were irradiated with doses from 0.25 Gy to 20 Gy using a Mevion S250 spread-out Bragg peak (SOBP) clinical proton beam. Using a fiber-coupled optical spectrometer, transmission spectra of the films were acquired over 400–800 nm range (with 2.5 nm resolution). The optical density (OD) of the films was also measured with a flatbed scanner. The characteristics of the film were investigated for dependencies on dose, inter-batch, energy, linear energy transfer (LET), and radiation type. Post-irradiation temporal growth of the OD of the films was also investigated. The net absorbance spectra of EBT-XD films exhibited two absorption peaks located at 636 nm and 585 nm. The measurement of percentage depth dose with the films showed ∼1%–5% and 7%–8% under-estimation on the dose in mid-SOBP and distal SOBP regions, respectively, compared to ionization chamber measurement. No significant energy dependence was noted in the OD of the films when irradiated at the same dose using different proton energies. Approximately 4%–10% drop in spectral response was seen for the proton-irradiated films relative to the films irradiated in photon beams. Temporal growth of the optical density showed a different developing slope between photon and proton irradiation in the first 12 h, but both reached a stable response 24 h after irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.