Abstract

High resolution spectropolarimetry of the Deep Impact target, Comet 9P/Tempel 1, was performed during the impact event on July 4th, 2005 with the HiVIS spectropolarimeter and the AEOS 3.67-m telescope on Haleakala, Maui. We observed atypical polarization spectra that changed significantly in the few hours after the impact. The polarization of scattered light as a function of wavelength is very sensitive to the size and composition (complex refractive index) of the scattering particles as well as the scattering geometry. As opposed to most observations of cometary dust, which show an increase in the linear polarization with the wavelength (at least in the visible domain and for phase angles greater than about 30, a red polarization spectrum) observations of 9P/Tempel 1 at a phase angle of 41° beginning 8 min after impact and centered at 6:30 UT showed a polarization of 4% at 650 nm falling to 3% at 950 nm. The next observation, centered an hour later showed a polarization of 7% at 650 nm falling to 2% at 950 nm. This corresponds to a spectropolarimetric gradient, or slope, of − 0.9 % per 1000 Å 40 min after impact, decreasing to a slope of − 2.3 % per 1000 Å an hour and a half after impact. This is an atypical blue polarization slope, which became more blue 1 h after impact. The polarization values of 4 and 7% at 650 nm are typical for comets at this scattering angle, whereas the low polarization of 2 and 3% at 950 nm is not. We compare observations of Comet 9P/Tempel 1 to that of a typical comet, C/2004 Machholz, at a phase angle of 30° which showed a typical red slope, rising from 2% at 650 nm to 3% at 950 nm in two different observations (+1.0 and + 0.9 % per 1000 Å).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.