Abstract

Velocity oscillations in sunspot umbrae have been measured simultaneously in two spectral lines: the photospheric Silicon I 10827 A line and the chromospheric Helium I 10830 A multiplet. From the full Stokes inversion of temporal series of spectropolarimetric observations we retrieved, among other parameters, the line of sight velocity temporal variations at photospheric and chromospheric heights. Chromospheric velocity oscillations show a three minute period with a clear sawtooth shape typical of propagating shock wave fronts. Photospheric velocity oscillations have basically a five minute period, although the power spectrum also shows a secondary peak in the three minute band which has proven to be predecessor for its chromospheric counterpart. The derived phase spectra yield a value of the atmospheric cut-off frequency around 4 mHz and give evidence for the upward propagation of higher frequency oscillation modes. The phase spectrum has been reproduced with a simple model of linear vertical propagation of slow magneto-acoustic waves in a stratified magnetized atmosphere that accounts for radiative losses through Newton's cooling law. The model explains the main features in the phase spectrum, and allows us to compute the theoretical time delay between the photospheric and chromospheric signals, which happens to have a strong dependence on frequency. We find a very good agreement between this and the time delay obtained directly from the cross-correlation of photospheric and chromospheric velocity maps filtered around the 6 mHz band. This allows us to infer that the 3-minute power observed at chromospheric heights comes directly from the photosphere by means of linear wave propagation, rather than from non-linear interaction of 5-minute (and/or higher frequency) modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call