Abstract

For sensing systems that characterize the spectro-polarimetric radiance reaching the camera, the origin of the sensed phenomenology is a complex mixture of sources. While some of these sources do not contribute to the polarimetric signature, many do such as the polarization state of the downwelled sky radiance, the target and background p-BRDF(polarimetric bidirectional reflectance distribution function), the polarization state of the upwelled path radiance, and the sensor Mueller matrix transfer function. In this paper we derive portions of the p-BRDF in terms of both the spectral diffuse and polarimetric specular components of the reflectance using an in-scene calibration technique. This process is applied to simulated data, laboratory data, and data from a field collection. Spectra of a car panel for clean and contaminated states derived using laboratory data are injected into a hyperspectral image cube. It is shown how this target can be identified using a target specific tracking vector derived from its polarimetric signature as it moves between spatial locations within a scene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call