Abstract

Spectrophotometric titrations were conducted on the system horse heart ferricytochromec plus ferrohexacyanide in the pH range 5 to 7 and at temperatures 8, 18, 22 and 28°C. A difference extinction coefficient for reducedvs. oxidized cytochromec at 550 nm of 21 mmol−1cm−1 was used in part of the evaluations. On the assumption that only one electron-transferlinked proton dissociation is effective for both ferro- and ferricytochromec in this pH range, various possible models are developed with only three conforming with the experimental pH dependence of the spectrophotometric equilibrium constant. The data conform best to a model with protonic dissociation constants between pH 5 and 7 such that the reduced cytochromec species is at least a factor of 3 more acidic than the one for oxidized cytochromec (with pK″H ≈ 6). This interpretation holds least for the data at 22°C, which points to a structural rearrangement at about this temperature (Czerlinski and Bracokova, 1973; Zabinski and Czerlinski, 1974; Zabinski, et al., 1974). While the extinction coefficient of ferrocytochromec shows no significant change with pH and temperature, the one for ferricytochromec does: it is about 5% larger at pH 5 than at pH 7 (550 nm). Graphs for the absorption change of ferricytochromec (pH 7 as reference) document the details over the wavelength range 500 to 750 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.