Abstract

A method for determining 0.0001–1% of arsenic in copper, nickel, molybdenum, lead and zinc concentrates is described. After sample decomposition, arsenic is separated from most of the matrix elements by co-precipitation with hydrous ferric oxide from an ammoniacal medium. Following reprecipitation of arsenic and iron, the precipitate is dissolved in ∼ 2 M hydrochloric acid and the solution is evaporated to a small volume to remove water. Arsenic(V) is reduced to the tervalent state with iron(II) and separated from iron, lead and other co-precipitated elements by chloroform extraction of its xanthate from an 11 M hydrochloric acid medium. After oxidation of arsenic(III) in the extract to arsenic(V) with bromine—carbon tetrachloride solution, it is back-extracted into water and determined by the molybdenum blue method. Small amounts of iron, copper and molybdenum, which are co-extracted as xanthates, and antimony, which is co-extracted to a slight extent as the chloro-complex under the proposed conditions, do not interfere. The proposed method is also applicable to copper-base alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call