Abstract

Computer color matching can improve production efficiency and reduce costs in color spun. However, in practice the computer color matching success rate for pre-colored fiber blends has not been good, leading to customers being unsatisfied with the accuracy of the color matching results. Aiming to improve the accuracy, a hybrid of least squares and grid search method has been proposed for spectrophotometric color matching of pre-colored fiber blend based on the improved Kubelka–Munk (K-M) double-constant theory. Two-primary, three-primary, four-primary, and five-primary pre-colored cotton fiber blends were prepared as standard samples to evaluate the color matching accuracy of the proposed method. Compared with the least squares method and the grid search method, the proposed method achieved better color matching effects and greatly shortened the calculation time, respectively. For 42 pre-colored fiber blends, the average color difference between the predicted results obtained by the proposed method, least squares method, and grid search method and the spectrophotometer measurements were respectively 0.29, 0.53, and 0.36 CIE2000 units. The experimental results indicated that the proposed method could predict the formulation of standard samples quickly and effectively, and that it was superior to other methods in providing satisfactory color matching results for the enterprises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.