Abstract

In this study, anthocyanin-rich fermented black carrot juice (şalgam/shalgam) was used as a chromogenic agent in order to develop eco-friendly, low-cost, simple, fast, and practical both visible spectrophotometric and smartphone-based methods for the determination of Al(III) ions in water samples. Formation of Al(III)-anthocyanin complex results in a color change from red to purple in direct proportion to the increasing Al(III) concentration. For the spectrophotometric analysis, the analytical response of the developed method between absorbance and logarithm of Al(III) concentration exhibits a satisfying wide linear concentration range from 37.0 to 1850.0 µM. The LOD and LOQ values are 6.67 µM and 22.0 µM, respectively. For smartphone-based analysis, the analytical response of the developed method between B values and Al(III) concentration obtained a linear concentration range from 18.5 to 111.0 µM. The LOD and LOQ values are 4.40 µM and 14.5 µM, respectively. LOD values are below the acceptable limit of Al(III) in water according to WHO (7.41 µM) for both methods. The interfering effect of common water ions was investigated, and the observed interferences from Sn2+, Fe2+, and Fe3+ were easily eliminated using enough concentration of Na2EDTA without affecting the blank absorbance/B value of the Al(III)−anthocyanin complex for two monitoring methods. The selectivity of the developed method was investigated in the presence of possible species such as benzoic acid, lactic acid, amino acids, and salt. Developed spectrophotometric and smartphone-based methods applied to real water samples and validated against the reference ICP-OES method at 95% confidence level using Student’s t- and F-tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call