Abstract

Interactions of ferredoxin-linked nitrite reductase (NiR) from spinach with its substrate were studied by spectrophotometry and electron spin resonance (ESR) spectroscopy. Siroheme was extractable from NiR with 2.5% (W/V) trichloroacetic acid (TCA) and with acetone containing 0.01 N HCl. The addition of nitrite or sulfite to these extracts resulted in shifts of the absorption spectra of siroheme. The HCl-acetone extract showed ESR signals of symmetrical high spin heme, which disappeared on addition of nitrite. Spectral titration indicated a high affinity of extracted siroheme to nitrite and sulfite. The addition of nitrite or sulfite to protoheme dissolved in 0.01 N HCl-acetone did not cause a shift of the absorption spectrum. The extractability of siroheme with 0.01 N HCl-acetone was suppressed by the addition of nitrite to the NiR preparation. Moreover, a substrate-induced difference spectrum with peaks at about 295 and 287 nm was observed on addition of nitrite to NiR. These observations indicated an intrinsic strong affinity of siroheme to nitrite and sulfite, formation of rhombicity of siroheme by binding to the protein moiety, and also a probable conformational change of NiR on binding to the substrate. In agreement with previous reports, ESR signals of the heme-NO complex were observed with NiR in the presence of nitrite, methyl viologen (MV), and dithionite. In the present study, the same signals of similar intensity were also observed on omission of MV, under which conditions no catalytic reduction of nitrite occurred. Furthermore, the signal of the heme-NO complex was not observed when MV was replaced by spinach ferredoxin.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call