Abstract

The molecular structure of a new complex of copper (II) with (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole ([Cu2(emppc)2Cl2]Cl2) was optimized with B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ theoretical level. The ligand, (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole (emppc), binds to Cu(II) ions with a bi-dentate mode, two Cl− serve as bridging ligand, each Cu(II) ion has a highly distorted tetrahedron coordination geometry. With M062X/LanL2DZ theoretical level, the calculated interaction energies of Cu(II) with coordination atoms N are between 183.3–200.0kJmol−1 for α spin and 319.4–324.9kJmol−1 for β spin, and interaction energies of Cu(II) with coordination atoms Cl atom are 248.0–252.4kJmol−1 for α spin and 332.6–333.6kJmol−1 for β spin. The experimental Fourier transform infrared spectrum was assigned. The calculated IR based on B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ methods were performed and compared with experimental results. The UV–Vis experimental spectra of [Cu2(emppc)2Cl2]Cl2 was measured in methanol solution. The calculated electronic spectrum was performed with TD/M062X and PCM-TD/M062X methods with LanL2DZ basis set. The nature bond orbital analysis and temperature dependence of the thermodynamic properties were calculated with the same methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.