Abstract

Effluent organic matter (EfOM) from activated sludge systems is composed primarily of influent refractory compounds, residual degradable substrate, intermediate products and soluble microbial products (SMPs). Depending on operational conditions (hydraulic and sludge retention time (SRT)), the quantity and quality of EfOM significantly changes. The main objective of this research was to quantify and characterize the EfOM of a lab-scale activated sludge sequencing batch reactor (SBR), which was operated at three SRTs and fed glucose, an easily biodegradable substrate. EfOM was followed with two direct-quantification methods (chemical oxygen demand (COD) and dissolved organic carbon (DOC)), three spectrometric methods (ultraviolet absorbance at 254 nm (UVA 254), excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC)) and three organic matter (OM) indices (specific UVA 254 (SUVA), SUVA–COD, COD/DOC ratio). The significant increment of UVA 254 and OM indices after treatment indicated an accumulation of refractory high-molecular-weight humic-like compounds in the EfOM, which demonstrated that EfOM was composed mainly by SMPs and not glucose. On the other hand, as the SRT increased, the amount of EfOM decreased, but SUVA, SUVA–COD and fluorescence intensity increased; these trends indicated the accumulation of SMPs of increased molecular weight and aromaticity. Increasing SRT in the SBRs reduced the amount of EfOM, but increased its aromaticity and reactivity. Visual analysis of EfOM EEMs showed two protein- and one humic-like peak, which were attributed to SMPs generated within the SBRs. PARAFAC determined that a two-component model best represented EfOM EEMs. The two-components from PARAFAC were mathematically correlated to the visually identified protein- and humic-like SMPs peaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call