Abstract

A highly selective spectrofluorometric method for the determination of total mercury (Hg) in waste waters is described. Fluorescence quenching of rhodamine B with Hg(II) in the presence of iodide, after a concentration step, is the basis of this sensitive method. All forms of mercury, including organic compounds, are pre-oxidized to ionic mercury by acidic potassium permanganate. The final and complete oxidation is achieved by adding potassium persulphate and heating. Hg(II) was reduced by tin(II) chloride and Hg vapour driven by an air stream into an absorption solution containing potassium permanganate and sulphuric acid, using a closed, recirculating air stream. In this solution fluorescence quenching of rhodamine B at an excitation wavelength of 485 nm and emission wavelength of 586 nm was measured. The recoveries were done by adding 3.0 μg Hg/100 ml to each sample before the digestion. It was indicated that the recoveries for determining mercury in waste waters were 98.3%–102.7%. The method gives reliable results down to a concentration of 10 ng Hg/ml waste water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.