Abstract

Following the sudden widespread of the novel coronavirus (COVID‐19) which first appeared in Wuhan city. Remdesivir (REM) was the first medicine licensed by the US Food and Drug Administration (FDA) for COVID‐19 infected hospitalized patients. Hence, there was an urgent demand for the optimization of efficient selective and sensitive methods to be developed for the determination of REM in pharmaceuticals as well as biological samples. A sensitive and simple green spectrofluorimetric method has been developed to determine REM in pharmaceutical formulation, in addition to, spiked human plasma. The technique involves measuring the native fluorescence of REM in distilled water at 410 nm followed by excitation at 241 nm, giving a linear relationship over the range 50.00–500.00 ng/mL, and then improving the sensitivity of REM through micellar formation using 2.00% w/v sodium dodecyl sulfate (SDS). A linear relationship has been obtained over the range 10.00–350.00 ng/mL having detection and quantitation limits of 2.34 and 7.10 ng/mL, respectively. Different analytical parameters have been carefully studied. A validation study has been conducted successfully in accordance with the FDA and the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The developed methods' greenness was assessed utilizing a greenness profile and analytical eco‐scale standards. Both methods were discovered to be environmentally friendly and could be successfully used for the determination of the studied drugs in pharmaceutical formulation and human plasma with good accuracy and high precision. As a result, the developed spectrofluorimetric methods could be ideally suited for determination of REM in quality control and medicinal laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.