Abstract

This work describes the successful incorporation of a redox active linker, tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine (TTPA) into Mn(ii)/Cu(ii) based coordination frameworks. Solution state in situ spectroelectrochemistry of EPR and UV/Vis/NIR of the TTPA ligand were measured to gain a deeper understanding of the charge delocalization of the triphenylamine backbone. The assignments of the absorption bands for the radical cations in UV/Vis/NIR spectroelectrochemistry were supported by DFT calculations. For Mn(ii)/Cu(ii) based coordination frameworks, solid state electrochemical and in situ spectroelectrochemical methods were applied to elucidate the accessible redox states and the optical properties of the frameworks. The findings provide a basic comprehension of the interconversion of different redox states and how an electroactive framework can be potentially used in applications of electrochromic and optical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call