Abstract

A fluorescence spectroelectrochemical sensor capable of detecting very low concentrations of metal complexes is described. The sensor is based on a novel spectroelectrochemical sensor that incorporates multiple internal reflection spectroscopy at an optically transparent electrode (OTE) coated with a selective film to enhance detection limits by preconcentrating the analyte at the OTE surface. Nafion was used as the selective cation exchange film for detecting Ru(bpy)(3)(2+), the model analyte, which fluoresces at 605 nm when excited with a 441.6-nm HeCd laser. The unoptimized linear dynamic range of the sensor for Ru(bpy)(3)(2+) is between 1 x 10(-)(11) and 1 x 10(-)(7) M with a calculated 2 x 10(-)(13) M detection limit. The sensor employs extremely thin films ( approximately 12 nm) without significantly sacrificing its sensitivity. The sensor response is demonstrated with varying film thicknesses. A state-of-the-art flow cell design allows variable cell volumes as low as approximately 4 microL. Fluorescence of the sample can be controlled by electromodulation between 0.7 and 1.3 V. Sensor operation is not reversible for the chosen model film (Nafion) and sample (Ru(bpy)(3)(2+)) but it can be regenerated with ethanol for multiple uses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call