Abstract

A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The overarching goal of the study is to dispel the myth that bottled water is better than tap water or vice versa. Other parameters analyzed were pH, conductivity, and Total Dissolved Solids (TDS). The results were compared with the Maximum Contaminant Limit (MCL) reported by the US Environmental Protection Agency (US-EPA). The concentrations of phosphorus, silicon, fluoride, and chloride conformed to the established values by US-EPA maximum contaminant level corresponding value. The level of Aluminum (Al), Boron (B), Chromium (Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lithium (Li), Manganese (Mn), Nickel (Ni), Titanium (Ti), Vanadium (V), and Zinc (Zn) conformed to the established values by governmental agencies (USEPA). Heavy metals such as Arsenic (As), Cadmium (Cd), Cobalt (Co), Lead (Pb), Mercury (Hg), and Silver (Ag) were detected in the tap water of the urban (Davidson) and urbanizing (Rutherford and Williamson) counties; suggesting that rural counties had a less heavy metal concentration in their drinking water sources than urban counties (P < 0.05). However, the values were below the Maximum Contaminant Levels (MCLs).

Highlights

  • In recent times, concern over drinking water quality and availability has become important to the global community, especially with population growth, coupled with rapid urbanization, changing lifestyles and economic development

  • A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

  • The results were compared with the Maximum Contaminant Limit (MCL) reported by the US Environmental Protection Agency (US-EPA)

Read more

Summary

Introduction

Concern over drinking water quality and availability has become important to the global community, especially with population growth, coupled with rapid urbanization, changing lifestyles and economic development. The presence of toxic chemicals, radionuclides, and nitrates/nitrites in drinking water may cause adverse effects on human health. Ailments such as cancer, bodily malfunctions, and chronic illnesses are among the human health conditions that may be associated with impaired drinking water sources [1]. Hexavalent chromium Cr (VI) [2] and Arsenic [3] [4] are potential contaminants in drinking water resources. This has remained a compelling challenge in many parts of the United States, as well as in regions affected by industrial pollution. On average filtration was found to remove a considerable amount of calcium (Ca) from the water, removing as much as about 89% of Ca [8]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call