Abstract
In an attempt to increase the robustness of automatic speech recognition (ASR) systems, a feature extraction scheme is proposed that takes spectro-temporal modulation frequencies (MF) into account. This physiologically inspired approach uses a two-dimensional filter bank based on Gabor filters, which limits the redundant information between feature components, and also results in physically interpretable features. Robustness against extrinsic variation (different types of additive noise) and intrinsic variability (arising from changes in speaking rate, effort, and style) is quantified in a series of recognition experiments. The results are compared to reference ASR systems using Mel-frequency cepstral coefficients (MFCCs), MFCCs with cepstral mean subtraction (CMS) and RASTA-PLP features, respectively. Gabor features are shown to be more robust against extrinsic variation than the baseline systems without CMS, with relative improvements of 28% and 16% for two training conditions (using only clean training samples or a mixture of noisy and clean utterances, respectively). When used in a state-of-the-art system, improvements of 14% are observed when spectro-temporal features are concatenated with MFCCs, indicating the complementarity of those feature types. An analysis of the importance of specific MF shows that temporal MF up to 25 Hz and spectral MF up to 0.25 cycles/channel are beneficial for ASR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.