Abstract

Cell-cell fusion generally requires cellular fusogenic proteins and actin-propelled membrane protrusions. However, the molecular connections between fusogens and the actin cytoskeleton remain unclear. Here, we show that the Caenorhabditis elegans fusogen EFF-1 and F-actin are enriched at the cortex ofthe post-embryonic fusing cells, and conditional mutations of WASP and Arp2/3 delay cell-cell fusion by impairing EFF-1 localization. Our affinity purification and mass spectrometry analyses determined that an actin-binding protein, spectraplakin/VAB-10A, binds to EFF-1. VAB-10A promotes cell-cell fusion by linking EFF-1 to the actin cytoskeleton. Conversely, EFF-1 enhanced the F-actin bundling activity of VAB-10A invitro, and actin dynamics in the cortex were reduced in eff-1 or vab-10a mutants. Thus, cell-cell fusion is promoted by a positive feedback loop in which actin filaments that are crosslinked by spectraplakin to recruit fusogens to fusion sites are reinforced via fusogens, thereby increasing the probability of further fusogen accumulation to form fusion synapses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.