Abstract
Convolutional neural networks (CNNs) have achieved impressive performance for hyperspectral (HS) and multispectral (MS) image fusion in recent years. They extract features by local filters, which is limited to explore long-range dependency in input images. However, long-range dependence is an import cue for HS and MS image fusion, as it contributes to exploration of spatial self-similarity and spectral dependence. To take advantage of long-range dependence, we propose a spectral-spatial transformer (SST) for MS and HS image fusion. The experimental results demonstrate the high performance of the proposed approach compared to some state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.