Abstract

Rotation Forest (RoF) is a recent powerful decision tree (DT) ensemble classifier of hyperspectral images. RoF exploits random feature selection and data transformation techniques to improve both the diversity and accuracy of DT classifiers. Conventional RoF only considers data transformation on spectral information. To overcome this limitation, we propose a spectral and spatial RoF (SSRoF), to further improve the performance. In SSRoF, pixels are first smoothed by the multiscale (MS) spatial weight mean filtering. Then, spectral–spatial data transformation, which is based on a joint spectral and spatial rotation matrix, is introduced into the RoF. Finally, classification results obtained from each scale are integrated by a majority voting rule. Experimental results on two datasets indicate the competitive performance of the proposed method when compared to other state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.