Abstract
Recent research has shown that integration of spatial information has emerged as a powerful tool in improving the classification accuracy of hyperspectral image (HSI). However, partitioning homogeneous regions of the HSI remains a challenging task. This paper proposes a novel spectral-spatial classification method inspired by the support vector machine (SVM). The model consists of spectral-spatial feature extraction channel (SSC) and SVM classifier. SSC is mainly used to extract spatial-spectral features of HSI. SVM is mainly used to classify the extracted features. The model can automatically extract the features of HSI and classify them. Experiments are conducted on benchmark HSI dataset (Indian Pines). It is found that the proposed method yields more accurate classification results compared to the state-of-the-art techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technology and Web Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.